Additional document 7

Translational control efficiency. Ratios. Translational control

- Quantitative genomic strategies. Absolute and relative magnitudes.
- Translational control efficiency (Trlc. Eff.) . Definition.
- Proteome-transcriptome correlations.
- Ratio relative changes in protein levels vs. relative changes in transcript levels. Ratio [(/) p / (/) tr.];
- Ratio of translational efficiencies (Ratio of Trlc. Eff.); Translational control.

Quantitative genomic studies. Strategies

1) Absolute 'omic levels (pools)

Example: ORF/gene i: Transcriptome and proteome levels

```
Definition: (Translational control efficiency) = ([Protein i]) / ([mRNA i])

(Trlc. Eff.) (per transcript) (protein / mRNA) ratio; actual levels/pools in the cell)

(Effective conversion into protein, encompassing synthesis and degradation processes)
```

[Absolute concentrations (pools), and translational efficiencies difficult to quantify. Being object of increasing investigation]

(Beilharz and Preiss, 2004; Arava et al., 2005; Mata et al., 2005)

Quantitative genomic studies. Strategies

2) Studies of relative changes in 'omic levels

Example: From condition '1' to '2':

ORF/gene i: Transcript change: 2 fold → Protein change: 3 fold

Example: ORF/gene i

Proteome - transcriptome correlation studies

Relative changes in proteome levels vs. relative changes at the transcriptional level. [([Protein;]₂ / [Protein;]₁) vs. ([mRNA;]₂ / [mRNA;]₁)]

Proteome - transcriptome correlation studies

Correlations. Graphical representations

"Relative changes in proteome levels vs. relative changes in transcriptional levels"

Proteome - transcriptome correlations. Ratios. Translational control

Let's define:

Ratio 'relative change in protein levels vs. relative change in transcript levels' (per ORF):

This can be rearranged:

=
$$([Protein_i]_2 / ([mRNA_i]_2) / ([Protein_i]_1 / [mRNA_i]_1)$$

which is equal to: --> = [(Translational ctrl. efficiency $)_i]_2 / [$ (Translational ctrl. efficiency $)_i]_1$ (see page 2)

= Ratio of translational control efficiencies $_{i}$ from condition 1 to 2 = (Ratio of Trlc. Eff.) $_{i}$

That is, the Ratio $[(/) p/(/) tr.]_i$, which can be obtained by integrative proteome-transcriptome studies, equals numerically to the ratio of translational efficiencies (per ORF) from condition 1 to 2. This opens the way towards:

Genome-wide studies of changes in translational control efficiencies (from condition 1 to 2) (e.g. genome-wide studies of relative changes in translational control efficiencies with growth rate).

Calculation of Ratio [$(/) p / (/) tr.]_i$

Ratio [(/)
$$\mathbf{p}$$
/(/) $\mathbf{tr.}$]_i = ([Protein_i]₂/[Protein_i]₁)/([mRNA_i]₂/[mRNA_i]₁)

From iTRAQ experiments:

([Protein $_{i}$]₂ / [Protein $_{i}$]₁) raw data \rightarrow logged for proper statistical analysis + normalization (see methods). -- > **Normalized** $\log_{2}([Protein_{i}]_{2} / [Protein_{i}]_{1})$ values = (Y_{i}) (or, = $\log_{2}[Protein_{i}]_{2} - \log_{2}[Protein_{i}]_{2}$)

From Microarray experiments:

($[mRNA_i]_2$ / $[mRNA_i]_1$) raw data \rightarrow logged for proper statistical analysis + normalization (see methods). -- > Normalized $\log_2([mRNA_i]_2$ / $[mRNA_i]_1$) values = (X_i)

(or, =
$$log_2 [mRNA_i]_2 - log_2 [mRNA_i]_2$$
)

 $\frac{\text{Ratio [(/) p / (/) tr.]}_{i}}{\text{([mRNA_{i}]_{2} / [mRNA_{i}]_{1})}} = \frac{2^{\land} (Y_{i})}{2^{\land} (X_{i})} = \frac{2^{\land} (X_{i})}{2^{\land} (X_{i})}$

Proteome - transcriptome correlations. Ratios. Translational control

Appendix: The **Ratio** [(/) **p** / (/) **tr.**]_i (using natural values, --> ratio from graph B, page 4) has physiological significance, providing direct information of those transcripts whose translational efficiency is changed from condition 1 to 2, their expression being regulated at the translational level.

Question: Does the ratio Log [(/) p]_i / Log [(/) tr.]_i (ratio from graph A, page 4) have also physiological significance?

```
Log[(/)p]<sub>i</sub> / Log[(/)tr.]<sub>i</sub> =

= Log ([Protein<sub>i</sub>]<sub>2</sub> / [Protein<sub>i</sub>]<sub>1</sub>) / Log ([mRNA<sub>i</sub>]<sub>2</sub> / [mRNA<sub>i</sub>]<sub>1</sub>)
which can be expressed as:
```

= $(\text{Log}[\text{Protein}_{i}]_{2} - \text{Log}[\text{Protein}_{i}]_{1})$ / $(\text{Log}[\text{mRNA}_{i}]_{2} - \text{Log}[\text{mRNA}_{i}]_{1})$ but, this **is not** equal to:

Conclusion: The ratio **Log**[(/)**p**]_i / **Log**[(/)**tr.**]_i (from graph A, page 4) has no direct physiological significance.

References

Arava Y, Boas FE, Brown PO, Herschlag D: **Dissecting eukaryotic translation and its** control by ribosome density mapping. *Nucleic Acids Res* 2005, **33**:2421-2432.

Beilharz TH, Preiss T: **Translational profiling: the genome-wide measure of the nascent proteome.** *Brief Funct Genomic Proteomic* 2004, **3**:103-111.

Mata J, Marguerat S, Bähler J: **Post-transcriptional control of gene expression: a genome-wide perspective.** *Trends Biochem Sci* 2005, **30**:506-514.